organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Triamcinolone acetonide acetate

Xiao Lu,^a Gu-Ping Tang,^a Jian-Ming Gu^b and Xiu-Rong Hu^b*

^aInstitute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou, Zhejiang 310028, People's Republic of China, and ^bChemistry Department, Zhejiang University, Hangzhou, Zhejiang 310028, People's Republic of China

Correspondence e-mail: huxiurong@yahoo.com.cn

Received 30 December 2010; accepted 5 January 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.006 Å; R factor = 0.035; wR factor = 0.100; data-to-parameter ratio = 7.2.

In the crystal structure of the title compound [systematic 2-(4b-fluoro-5-hydroxy-4a,6a,8,8-tetramethyl-2-oxoname: 2,4a,4b,5,6,6a,9a,10,10a,10b,11,12-dodecahydro-7,9-dioxapentaleno[2,1-a]phenanthren-6b-yl)-2-oxoethyl acetate], C₂₆H₃₃FO₇, the molecules are connected by intermolecular O-H···O hydrogen bonds into an infinite supramolecular chain along the b axis. The molecular framework consists of five condensed rings, including three six-membered rings and two five-membered rings. The cyclohexa-2,5-dienone ring is nearly planar [maximum deviation = 0.013 (3) Å], while the cyclohexane rings adopt chair conformations. The two fivemembered rings, viz. cyclopentane and 1,3-dioxolane, display envelope conformations.

Related literature

For applications of triamcinolone acetonide in medicine, see: Barnes (1998); Buttgereit (2000); Uckermann et al. (2005). For the crystal structures of related triamcinolone acetonide acetates, see: Suitchlmezian et al. (2006); Jess & Näther (2006).

Experimental

Crystal data

C ₂₆ H ₃₃ FO ₇	$V = 1216.56 (12) \text{ Å}^3$
$M_r = 476.52$	Z = 2
Monoclinic, P2 ₁	Mo $K\alpha$ radiation
a = 7.5460 (7) Å	$\mu = 0.10 \text{ mm}^{-1}$
b = 14.8102 (4) Å	T = 296 K
c = 11.5773 (3) Å	$0.38 \times 0.33 \times 0.26 \text{ mm}$
$\beta = 109.905 \ (1)^{\circ}$	

Data collection

Rigaku R-AXIS RAPID/ZJUG diffractometer 9347 measured reflections

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.035 \\ wR(F^2) &= 0.100 \end{split}$$
1 restraint H-atom parameters constrained S = 1.00 $\Delta \rho_{\rm max} = 0.18 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.21$ e Å⁻³ 2216 reflections 308 parameters

2216 independent reflections

 $R_{\rm int}=0.027$

1866 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O2-H201\cdots O1^{i}$	0.82	1.98	2.793 (4)	169
Symmetry code: (i) $-r \pm 2$ y $-\frac{1}{2}$ $-z \pm 2$				

mmetry code: (i) -x + 2, $y - \frac{1}{2}$, -z + 2.

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The project was supported by the Zhejiang Provincial Natural Science Foundation of China (J200801).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5133).

References

- Barnes, P. J. (1998). Clin. Sci. 94, 557-572.
- Buttgereit, F. (2000). Z. Rheumatol. 59, 119-123.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Jess, I. & Näther, C. (2006). Acta Cryst. E62, 0960-0962.
- Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Rigaku (2007). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Suitchlmezian, V., Jess, I. & Näther, C. (2006). Acta Cryst. E62, 0788-0790.
- Uckermann, O., Kutzera, F., Wolf, A., Pannicke, T., Reichenbach, A., Wiedemann, P., Wolf, S. & Bringmann, A. (2005). J. Pharmacol. Exp. Ther. 315, 1036-1045.

Acta Cryst. (2011). E67, o360 [doi:10.1107/S1600536811000316]

Triamcinolone acetonide acetate

X. Lu, G.-P. Tang, J.-M. Gu and X.-R. Hu

Comment

The glucocorticoid triamcinolone acetonide is clinically used for the treatment of suppression of inflammation in chronic inflammatory diseases such as asthma, rheumatiod arthritis, inflammatory bowel disease and autoimmune diseases (Barnes, 1998; Buttgereit, 2000; Uckermann et al., 2005). Triamcinolone acetonide acetate is another derivatives of triamcinolone, which has been used in therapy for several decades. Despite its great importance, no crystal structures of the title compound has been reported. But crystal structure of it's analogue compounds, triamcinolone diacetate chloroform solvate and triamcinole acetonide methanol solvate have been reported (Suitchlmezian et al., 2006 & Jess et al., 2006). In the title compound, the bond lengths and angles are in agreement with those reported for other triamcinolone derivatives (Suitchlmezian et al., 2006; Jess et al., 2006). and are within the expected ranges. The molecular framework consists of five condensed rings, including three six-membered rings and two five-membered rings. Atom O1 is coplanar with cyclohexa-1,4-diene ring (C8-C9-C10-C11-C12-C13), which is planar. Two central six-membered rings (C5-C6-C7-C8-C13-C14) and (C4-C5-C14-C15-C16-C17) are in chair conformation. Two five-membered rings display twisted envelope conformations. The respective r.m.s. deviations for four atoms C1/C2/C3/C17 and C1/C2/O6/O7 are 0.0359 Å, 0.0225Å respectively. The fifth atoms C4, C22 deviate from the above planes by 0.688 (4) Å, 0.458 (4)Å respectively. Hydroxy group and one of the carboxyl O atom are involved in the hydrogen-bonded network. Atom O2 from hydroxy group in the molecule at (x,y,z) act as hydrogen bond donor, to O1 atom of carboxyl group in the molecule (2 - x, -1/2 + y, 2 - z). Crystal packing is influenced by this intermolecular hydrogen bond interaction that links the molecules into a chain propagating along b axis.

Experimental

The crude product of the title compound was supplied by Zhejiang Xianju Pharmaceutical Co., LTD. It was recrystallized from methanol solution, giving single crystals suitable for X-ray diffraction.

Refinement

H atoms were placed in calculated positions with C—H = 0.93–0.98 and O—H = 0.82 Å, and included in the refinement in riding model with $U_{iso}(H) = 1.2U_{eq}$ or $1.5U_{eq}$ (carrier atom).

Figures

Fig. 1. Molecular structure of the title compound (I) showing atom-labelling scheme and displacement ellipsoids at 50% probability level. H atoms are shown as small circles of arbitrary radii.

Fig. 2. A chain of molecules linked through hydrogen-bonded interactions propagating along *b* axis. Hydrogen bonds are shown as dashed lines. [Symmetric code: (i)(2 - x, -1/2 + y, 2 - z); (ii)(2 - x, 1/2 + y, 2 - z)]

2-(4b-Fluoro-5-hydroxy-4a,6a,8,8-tetramethyl-2-oxo- 2,4a,4b,5,6,6a,9a,10,10a,10b,11,12-dodecahydro-7,9-di-oxa- pentaleno[2,1-a]phenanthren-6b-yl)-2-oxoethyl acetate

Crystal data	
C ₂₆ H ₃₃ FO ₇	F(000) = 508
$M_r = 476.52$	$D_{\rm x} = 1.301 {\rm ~Mg~m^{-3}}$
Monoclinic, <i>P</i> 2 ₁	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2yb	Cell parameters from 8589 reflections
a = 7.5460 (7) Å	$\theta = 3.2-27.4^{\circ}$
b = 14.8102 (4) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 11.5773 (3) Å	T = 296 K
$\beta = 109.905 \ (1)^{\circ}$	Chunk, colorless
$V = 1216.56 (12) \text{ Å}^3$	$0.38 \times 0.33 \times 0.26 \text{ mm}$
<i>Z</i> = 2	

Data collection

Rigaku R-AXIS RAPID/ZJUG diffractometer	1866 reflections with $I > 2\sigma(I)$
Radiation source: rolling anode	$R_{\rm int} = 0.027$
graphite	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$
Detector resolution: 10.00 pixels mm ⁻¹	$h = -8 \rightarrow 8$
ω scans	$k = -17 \rightarrow 17$
9347 measured reflections	$l = -13 \rightarrow 13$
2216 independent reflections	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.100$ S = 1.002216 reflections 308 parameters 1 restraint Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0428P)^2 + 0.6583P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.18 \text{ e Å}^{-3}$ $\Delta\rho_{min} = -0.21 \text{ e Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
F1	0.6313 (3)	0.54106 (13)	0.76554 (17)	0.0388 (5)
O6	0.5255 (4)	0.35878 (18)	0.4342 (2)	0.0425 (6)
07	0.2113 (4)	0.3480 (2)	0.3882 (2)	0.0580 (8)
O2	0.9010 (4)	0.3514 (2)	0.9117 (2)	0.0498 (7)
H201	0.9978	0.3303	0.9056	0.075*
01	0.7606 (4)	0.76945 (19)	1.0779 (3)	0.0558 (8)
O4	0.8680 (4)	0.1362 (2)	0.4470 (3)	0.0638 (9)
O3	0.5322 (4)	0.1277 (2)	0.4898 (3)	0.0582 (8)
O5	0.9888 (5)	0.1500 (2)	0.6510(3)	0.0728 (9)
C8	0.5342 (5)	0.5590 (3)	0.9699 (3)	0.0407 (9)
C14	0.6558 (5)	0.4623 (2)	0.8393 (3)	0.0322 (7)
C16	0.7704 (5)	0.3720 (3)	0.6873 (3)	0.0376 (8)
H16A	0.7556	0.4198	0.6275	0.045*
H16B	0.8731	0.3336	0.6848	0.045*
C5	0.4670 (5)	0.4121 (2)	0.7923 (3)	0.0336 (8)
Н5	0.4738	0.3602	0.8461	0.040*
C7	0.3424 (5)	0.5160 (3)	0.9231 (4)	0.0480 (10)
H7A	0.2468	0.5613	0.9171	0.058*
H7B	0.3334	0.4700	0.9805	0.058*
C13	0.6966 (5)	0.4988 (2)	0.9729 (3)	0.0361 (8)
C17	0.5885 (5)	0.3160 (2)	0.6510 (3)	0.0333 (8)
С9	0.5589 (5)	0.6453 (3)	1.0052 (3)	0.0433 (9)
Н9	0.4539	0.6789	1.0033	0.052*
C6	0.3070 (5)	0.4733 (3)	0.7971 (4)	0.0425 (9)
H6A	0.1915	0.4384	0.7748	0.051*
H6B	0.2891	0.5210	0.7367	0.051*
C4	0.4318 (4)	0.3771 (3)	0.6626 (3)	0.0339 (8)
H4	0.4259	0.4300	0.6104	0.041*
C10	0.7421 (5)	0.6892 (3)	1.0465 (3)	0.0424 (9)
C11	0.9034 (5)	0.6337 (3)	1.0487 (4)	0.0479 (10)
H11	1.0234	0.6590	1.0748	0.058*
C3	0.2545 (5)	0.3219 (3)	0.6011 (4)	0.0450 (9)
H3A	0.1427	0.3595	0.5788	0.054*

H3B	0.2417	0.2735	0.6542	0.054*
C15	0.8226 (5)	0.4144 (3)	0.8163 (3)	0.0368 (8)
H15	0.9191	0.4603	0.8229	0.044*
C12	0.8813 (5)	0.5480 (3)	1.0142 (3)	0.0432 (9)
H12	0.9880	0.5160	1.0156	0.052*
C26	0.6145 (5)	0.2300 (3)	0.7297 (3)	0.0430 (9)
H26A	0.7140	0.1940	0.7194	0.065*
H26B	0.4995	0.1959	0.7042	0.065*
H26C	0.6464	0.2464	0.8146	0.065*
C19	0.7634 (7)	0.2173 (3)	0.4445 (4)	0.0599 (11)
H19A	0.7220	0.2420	0.3620	0.072*
H19B	0.8453	0.2614	0.4989	0.072*
C1	0.5043 (6)	0.2880 (3)	0.5130 (3)	0.0386 (8)
C2	0.2878 (5)	0.2844 (3)	0.4866 (3)	0.0447 (9)
H2	0.2359	0.2235	0.4651	0.054*
C22	0.3498 (6)	0.3674 (3)	0.3347 (3)	0.0502 (10)
C18	0.5929 (6)	0.2019 (3)	0.4831 (3)	0.0438 (9)
C25	0.7128 (7)	0.4231 (3)	1.0695 (4)	0.0530 (10)
H25A	0.5968	0.3898	1.0471	0.080*
H25B	0.7376	0.4499	1.1490	0.080*
H25C	0.8140	0.3830	1.0720	0.080*
C24	0.3353 (8)	0.3027 (4)	0.2306 (4)	0.0689 (14)
H24A	0.4307	0.3168	0.1959	0.103*
H24B	0.2132	0.3081	0.1685	0.103*
H24C	0.3527	0.2419	0.2616	0.103*
C20	0.9797 (6)	0.1098 (3)	0.5594 (4)	0.0568 (11)
C23	0.3293 (8)	0.4648 (4)	0.2940 (4)	0.0709 (14)
H23A	0.4223	0.4789	0.2572	0.106*
H23B	0.3469	0.5032	0.3639	0.106*
H23C	0.2057	0.4743	0.2352	0.106*
C21	1.0917 (8)	0.0281 (4)	0.5528 (6)	0.0910 (18)
H21A	1.0576	0.0087	0.4689	0.137*
H21B	1.0658	-0.0194	0.6012	0.137*
H21C	1.2235	0.0425	0.5840	0.137*

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
F1	0.0395 (11)	0.0373 (12)	0.0392 (11)	-0.0020 (9)	0.0130 (9)	0.0066 (9)
O6	0.0465 (14)	0.0450 (16)	0.0341 (12)	-0.0009 (12)	0.0114 (11)	0.0025 (12)
O7	0.0448 (15)	0.077 (2)	0.0448 (14)	0.0049 (15)	0.0062 (12)	0.0030 (15)
O2	0.0450 (15)	0.0604 (19)	0.0387 (13)	0.0179 (14)	0.0076 (12)	0.0010 (13)
O1	0.0597 (18)	0.0436 (18)	0.0664 (19)	-0.0124 (14)	0.0245 (15)	-0.0184 (15)
O4	0.0615 (18)	0.068 (2)	0.0601 (18)	0.0153 (16)	0.0186 (15)	-0.0178 (16)
O3	0.069 (2)	0.0429 (18)	0.0593 (17)	-0.0048 (15)	0.0181 (15)	-0.0110 (14)
O5	0.082 (2)	0.075 (2)	0.0631 (19)	-0.0134 (19)	0.0274 (17)	-0.0146 (19)
C8	0.039 (2)	0.046 (2)	0.043 (2)	-0.0073 (17)	0.0224 (16)	-0.0088 (18)
C14	0.0344 (18)	0.0307 (18)	0.0322 (16)	0.0007 (15)	0.0123 (14)	0.0025 (15)

C16	0.0355 (18)	0.045 (2)	0.0375 (18)	-0.0023 (17)	0.0195 (15)	-0.0066 (17)
C5	0.0340 (17)	0.0343 (19)	0.0372 (17)	-0.0021 (15)	0.0183 (15)	-0.0010 (15)
C7	0.039 (2)	0.054 (3)	0.062 (2)	-0.0047 (19)	0.032 (2)	-0.013 (2)
C13	0.0371 (19)	0.038 (2)	0.0347 (18)	-0.0003 (16)	0.0142 (16)	-0.0025 (15)
C17	0.0349 (18)	0.0345 (19)	0.0324 (16)	-0.0015 (15)	0.0140 (15)	-0.0026 (15)
C9	0.0369 (19)	0.047 (2)	0.048 (2)	-0.0009 (17)	0.0170 (17)	-0.0122 (18)
C6	0.0271 (17)	0.050 (2)	0.053 (2)	-0.0051 (16)	0.0169 (16)	-0.0100 (19)
C4	0.0316 (17)	0.0364 (19)	0.0345 (17)	-0.0037 (15)	0.0122 (15)	-0.0007 (15)
C10	0.042 (2)	0.048 (3)	0.0382 (19)	-0.0085 (18)	0.0159 (17)	-0.0087 (18)
C11	0.0365 (19)	0.057 (3)	0.049 (2)	-0.0062 (19)	0.0123 (17)	-0.013 (2)
C3	0.037 (2)	0.048 (2)	0.052 (2)	-0.0076 (17)	0.0171 (17)	-0.0077 (18)
C15	0.0343 (18)	0.038 (2)	0.0406 (19)	0.0000 (16)	0.0163 (15)	-0.0046 (16)
C12	0.0379 (19)	0.053 (3)	0.0385 (19)	-0.0013 (18)	0.0130 (16)	-0.0100 (19)
C26	0.046 (2)	0.042 (2)	0.0373 (19)	-0.0022 (18)	0.0098 (17)	-0.0018 (18)
C19	0.068 (3)	0.057 (3)	0.064 (3)	0.011 (2)	0.035 (2)	-0.004 (2)
C1	0.0438 (19)	0.038 (2)	0.0345 (18)	-0.0009 (17)	0.0139 (16)	-0.0025 (16)
C2	0.044 (2)	0.045 (2)	0.041 (2)	-0.0104 (18)	0.0103 (17)	-0.0103 (17)
C22	0.048 (2)	0.062 (3)	0.0328 (18)	0.006 (2)	0.0041 (17)	0.0013 (19)
C18	0.047 (2)	0.041 (2)	0.0375 (19)	0.0025 (18)	0.0079 (17)	-0.0035 (17)
C25	0.066 (3)	0.058 (3)	0.038 (2)	0.006 (2)	0.0218 (19)	0.0061 (19)
C24	0.079 (3)	0.075 (3)	0.045 (2)	-0.001 (3)	0.012 (2)	-0.011 (2)
C20	0.047 (2)	0.054 (3)	0.069 (3)	-0.008 (2)	0.018 (2)	-0.009 (2)
C23	0.084 (4)	0.060 (3)	0.055 (3)	0.011 (3)	0.004 (3)	0.009 (2)
C21	0.080 (4)	0.069 (4)	0.123 (5)	0.012 (3)	0.033 (4)	-0.008 (4)

Geometric parameters (Å, °)

F1—C14	1.420 (4)	С6—Н6В	0.9700
O6—C1	1.434 (4)	C4—C3	1.523 (5)
O6—C22	1.436 (4)	C4—H4	0.9800
O7—C22	1.414 (5)	C10—C11	1.462 (6)
O7—C2	1.439 (5)	C11—C12	1.325 (6)
O2—C15	1.412 (5)	C11—H11	0.9300
O2—H201	0.8200	C3—C2	1.535 (5)
O1—C10	1.237 (5)	С3—НЗА	0.9700
O4—C20	1.346 (5)	С3—Н3В	0.9700
O4—C19	1.431 (5)	С15—Н15	0.9800
O3—C18	1.204 (5)	C12—H12	0.9300
O5—C20	1.197 (5)	C26—H26A	0.9600
C8—C9	1.335 (5)	С26—Н26В	0.9600
C8—C7	1.503 (5)	C26—H26C	0.9600
C8—C13	1.506 (5)	C19—C18	1.516 (6)
C14—C5	1.533 (5)	C19—H19A	0.9700
C14—C15	1.545 (5)	C19—H19B	0.9700
C14—C13	1.567 (5)	C1—C18	1.533 (5)
C16—C17	1.535 (5)	C1—C2	1.557 (6)
C16—C15	1.542 (5)	С2—Н2	0.9800
C16—H16A	0.9700	C22—C23	1.509 (7)
C16—H16B	0.9700	C22—C24	1.514 (6)

a. a.	1 500 (5)		0.0700
C5—C4	1.523 (5)	C25—H25A	0.9600
C5—C6	1.526 (5)	С25—Н25В	0.9600
С5—Н5	0.9800	С25—Н25С	0.9600
C7—C6	1.528 (5)	C24—H24A	0.9600
С7—Н7А	0.9700	C24—H24B	0.9600
С7—Н7В	0.9700	C24—H24C	0.9600
C13—C12	1.499 (5)	C20—C21	1.493 (7)
C13—C25	1.559 (5)	С23—Н23А	0.9600
C17—C4	1.531 (5)	С23—Н23В	0.9600
C17—C26	1.539 (5)	C23—H23C	0.9600
C17—C1	1.561 (5)	C21—H21A	0.9600
C9—C10	1.453 (5)	C21—H21B	0.9600
С9—Н9	0.9300	C21—H21C	0.9600
С6—Н6А	0.9700		
C1—O6—C22	107.6 (3)	O2-C15-C16	112.9 (3)
C22—O7—C2	108.9 (3)	O2-C15-C14	108.5 (3)
C15—O2—H201	109.5	C16—C15—C14	113.5 (3)
C20—O4—C19	115.0 (3)	O2—C15—H15	107.2
C9—C8—C7	122.2 (4)	С16—С15—Н15	107.2
C9—C8—C13	122.1 (3)	С14—С15—Н15	107.2
C7—C8—C13	115.7 (3)	C11—C12—C13	124.7 (4)
F1—C14—C5	105.6 (3)	С11—С12—Н12	117.6
F1-C14-C15	102.7 (2)	С13—С12—Н12	117.6
C5-C14-C15	115.4 (3)	C17—C26—H26A	109.5
F1-C14-C13	104 6 (3)	C17—C26—H26B	109.5
C_{5} C_{14} C_{13}	111 4 (3)	H26A-C26-H26B	109.5
C15-C14-C13	115 5 (3)	$C_{17} - C_{26} - H_{26} C_{26}$	109.5
C_{17} $-C_{16}$ $-C_{15}$	113.3 (3)	$H_{26A} - C_{26} - H_{26C}$	109.5
C_{17} C_{16} H_{16A}	108.9	$H_{26R} = C_{26} = H_{26C}$	109.5
C15-C16-H16A	108.9	04 - C19 - C18	107.5 112.7 (4)
C17_C16_H16B	108.9	04 - 019 - 018	100 1
C15-C16-H16B	108.9	C_{18} C_{19} H_{19A}	109.1
H16A C16 H16B	103.9	$O_{10} = C_{10} = H_{10} R$	109.1
	107.7	C_{19} C_{10} U_{100}	109.1
C4 = C5 = C6	111.5 (3)	C18-C19-H19B	109.1
C4 - C5 - C14	110.1 (2)	HI9A - C19 - HI9B	107.8
C6—C5—C14	110.5 (3)	06-01-018	108.2 (3)
С4—С5—Н5	108.3	06-01-02	103.8 (3)
С6—С5—Н5	108.3	C18—C1—C2	115.9 (3)
C14—C5—H5	108.3	06—C1—C17	111.3 (3)
C8—C7—C6	110.7 (3)	C18—C1—C17	113.3 (3)
С8—С7—Н7А	109.5	C2—C1—C17	104.1 (3)
С6—С7—Н7А	109.5	O7—C2—C3	107.9 (3)
С8—С7—Н7В	109.5	O7—C2—C1	104.1 (3)
С6—С7—Н7В	109.5	C3—C2—C1	106.7 (3)
H7A—C7—H7B	108.1	O7—C2—H2	112.5
C12—C13—C8	112.4 (3)	С3—С2—Н2	112.5
C12—C13—C25	106.5 (3)	С1—С2—Н2	112.5
C8—C13—C25	107.9 (3)	O7—C22—O6	104.4 (3)
C12—C13—C14	109.3 (3)	O7—C22—C23	108.6 (4)

C8—C13—C14	107.2 (3)	O6—C22—C23	107.7 (4)
C25—C13—C14	113.7 (3)	O7—C22—C24	110.8 (4)
C4—C17—C16	107.5 (3)	O6—C22—C24	112.2 (4)
C4—C17—C26	112.6 (3)	C23—C22—C24	112.7 (4)
C16—C17—C26	111.3 (3)	O3—C18—C19	122.4 (4)
C4—C17—C1	100.9 (3)	O3—C18—C1	122.7 (4)
C16—C17—C1	116.0 (3)	C19—C18—C1	114.9 (4)
C26—C17—C1	108.2 (3)	C13—C25—H25A	109.5
C8—C9—C10	123.2 (4)	С13—С25—Н25В	109.5
С8—С9—Н9	118.4	H25A—C25—H25B	109.5
С10—С9—Н9	118.4	C13—C25—H25C	109.5
C5—C6—C7	113.4 (3)	H25A—C25—H25C	109.5
С5—С6—Н6А	108.9	H25B—C25—H25C	109.5
С7—С6—Н6А	108.9	C22—C24—H24A	109.5
С5—С6—Н6В	108.9	C22—C24—H24B	109.5
С7—С6—Н6В	108.9	H24A—C24—H24B	109.5
H6A—C6—H6B	107.7	С22—С24—Н24С	109.5
C3—C4—C5	118.3 (3)	H24A—C24—H24C	109.5
C3—C4—C17	102.9 (3)	H24B—C24—H24C	109.5
C5—C4—C17	114.0 (3)	O5—C20—O4	122.7 (4)
C3—C4—H4	107.0	O5—C20—C21	125.8 (5)
С5—С4—Н4	107.0	O4—C20—C21	111.4 (4)
С17—С4—Н4	107.0	С22—С23—Н23А	109.5
O1—C10—C9	121.8 (4)	С22—С23—Н23В	109.5
O1—C10—C11	121.7 (4)	H23A—C23—H23B	109.5
C9—C10—C11	116.6 (3)	С22—С23—Н23С	109.5
C12-C11-C10	121.0 (4)	H23A—C23—H23C	109.5
C12—C11—H11	119.5	H23B—C23—H23C	109.5
С10—С11—Н11	119.5	C20-C21-H21A	109.5
C4—C3—C2	102.9 (3)	C20—C21—H21B	109.5
С4—С3—НЗА	111.2	H21A—C21—H21B	109.5
С2—С3—НЗА	111.2	C20-C21-H21C	109.5
C4—C3—H3B	111.2	H21A—C21—H21C	109.5
С2—С3—Н3В	111.2	H21B—C21—H21C	109.5
НЗА—СЗ—НЗВ	109.1		
F1-C14-C5-C4	67.2 (3)	F1-C14-C15-O2	161.5 (3)
C15-C14-C5-C4	-45.5 (4)	C5-C14-C15-O2	-84.1 (3)
C13-C14-C5-C4	-179.8 (3)	C13—C14—C15—O2	48.3 (4)
F1-C14-C5-C6	-56.1 (3)	F1-C14-C15-C16	-72.2 (4)
C15-C14-C5-C6	-168.9 (3)	C5-C14-C15-C16	42.2 (4)
C13—C14—C5—C6	56.9 (4)	C13-C14-C15-C16	174.6 (3)
C9—C8—C7—C6	125.6 (4)	C10-C11-C12-C13	-1.3 (6)
C13—C8—C7—C6	-53.7 (5)	C8—C13—C12—C11	2.3 (5)
C9—C8—C13—C12	-2.4 (5)	C25-C13-C12-C11	-115.6 (4)
C7—C8—C13—C12	176.9 (3)	C14—C13—C12—C11	121.2 (4)
C9—C8—C13—C25	114.7 (4)	C20—O4—C19—C18	-77.7 (5)
C7—C8—C13—C25	-66.0 (4)	C22—O6—C1—C18	99.8 (3)
C9—C8—C13—C14	-122.5 (4)	C22—O6—C1—C2	-23.8 (4)
C7—C8—C13—C14	56.8 (4)	C22—O6—C1—C17	-135.2 (3)

F1-C14-C13-C12	-65.8 (3)		C4—C17—C1—O6		78.1 (3)
C5-C14-C13-C12	-179.5 (3)		C16—C17—C1—O6		-37.7 (4)
C15-C14-C13-C12	46.3 (4)		C26—C17—C1—O6		-163.5 (3)
F1-C14-C13-C8	56.3 (3)		C4—C17—C1—C18		-159.7 (3)
C5-C14-C13-C8	-57.4 (4)		C16—C17—C1—C18		84.5 (4)
C15-C14-C13-C8	168.4 (3)		C26—C17—C1—C18		-41.3 (4)
F1-C14-C13-C25	175.4 (3)		C4—C17—C1—C2		-33.0 (4)
C5-C14-C13-C25	61.8 (4)		C16—C17—C1—C2		-148.8 (3)
C15-C14-C13-C25	-72.5 (4)		C26—C17—C1—C2		85.4 (3)
C15-C16-C17-C4	55.6 (4)		С22—О7—С2—С3		129.1 (3)
C15-C16-C17-C26	-68.1 (4)		C22—O7—C2—C1		16.0 (4)
C15-C16-C17-C1	167.7 (3)		C4—C3—C2—O7		-90.1 (3)
C7—C8—C9—C10	-177.7 (4)		C4—C3—C2—C1		21.3 (4)
C13—C8—C9—C10	1.6 (6)		O6—C1—C2—O7		4.9 (4)
C4—C5—C6—C7	-175.6 (3)		C18—C1—C2—O7		-113.5 (3)
C14—C5—C6—C7	-52.9 (4)		C17—C1—C2—O7		121.5 (3)
C8—C7—C6—C5	50.0 (5)		O6—C1—C2—C3		-109.0 (3)
C6—C5—C4—C3	-59.5 (4)		C18—C1—C2—C3		132.6 (3)
C14—C5—C4—C3	177.6 (3)		C17—C1—C2—C3		7.5 (4)
C6—C5—C4—C17	179.4 (3)		C2—O7—C22—O6		-31.0 (4)
C14—C5—C4—C17	56.5 (4)		C2—O7—C22—C23		-145.7 (3)
C16—C17—C4—C3	169.2 (3)		C2—O7—C22—C24		90.0 (4)
C26—C17—C4—C3	-67.9 (4)		C1—O6—C22—O7		34.3 (4)
C1—C17—C4—C3	47.2 (3)		C1—O6—C22—C23		149.6 (3)
C16—C17—C4—C5	-61.5 (4)		C1—O6—C22—C24		-85.8 (4)
C26—C17—C4—C5	61.5 (4)		O4—C19—C18—O3		-14.4 (6)
C1—C17—C4—C5	176.6 (3)		O4-C19-C18-C1		165.5 (3)
C8—C9—C10—O1	179.5 (4)		O6—C1—C18—O3		-146.6 (4)
C8—C9—C10—C11	-0.4 (6)		C2-C1-C18-O3		-30.6 (5)
O1-C10-C11-C12	-179.7 (4)		C17—C1—C18—O3		89.6 (5)
C9—C10—C11—C12	0.2 (6)		O6-C1-C18-C19		33.5 (4)
C5—C4—C3—C2	-169.4 (3)		C2-C1-C18-C19		149.4 (3)
C17—C4—C3—C2	-42.8 (4)		C17—C1—C18—C19		-90.4 (4)
C17—C16—C15—O2	76.4 (4)		C19—O4—C20—O5		1.2 (6)
C17—C16—C15—C14	-47.6 (4)		C19—O4—C20—C21		-176.7 (4)
Hydrogen-bond geometry (Å, °)					
D—H···A		<i>D</i> —Н	H···A	$D \cdots A$	D—H····A
O2—H201···O1 ⁱ		0.82	1.98	2.793 (4)	169
				. ,	

Symmetry codes: (i) -x+2, y-1/2, -z+2.

Fig. 1

Fig. 2